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Abstract

This paper presents a three-dimensional numerical and experimental geometric optimization study to maximize the total heat transfer rate
between a bundle of finned tubes in a given volume and external flowaiggeared arrangements of circuladeelliptic tubes. Experimental
results were obtained for circular and elliptic configurations with twelve tubes, starting with an equilateral triangle configuration, which fitted
uniformly into the fixed volume with a resulting optimal dimensionless tube-to-tube spaci @bt 1.5, whereS is the actual spacing and
b is the smaller semi-axis of the ellipse. Several experimental configurations were built by reducing the tube-to-tube spacings, identifying
the optimal spacing for maximum heat transfer. Similarly, it was possible to investigate the existence of optima with respect to two other
geometric degrees of freedom, such as tube eccentricity and fin-toaftingp The results are reported for air as the external fluid in the
laminar regime, foRe; = 852 and 1065, wherg is the swept length of the fixed volume. Circular and elliptic arrangements with the same
flow obstruction cross-sectional area were compared on the basis of maximizing the total heat transfer. This criterion allows one to isolate
and quantify the heat transfer gain, by studying arrangements with equivalent total pressure drops independently of the tube cross-sectior
shape. This paper continues with three-dimensional numerical optimization results for finned circular and elliptic tubes arrangements, which
are validated by direct comparison with expeental measurements. Global optima with respect to tube-to-tube spacing, eccentricity and
fin-to-fin spacing §/2b = 0.5, ¢ = 0.5, ¢ y = 0.06 forRe; = 852 and 1065) were found and reported in dimensionless terms. A relative heat
transfer gain of up to 19% is observed in the optimal elliptic arrangement, as compared to the optimal circular one. The heat transfer gain,
combined with the relative material mass reduction of up to 32% observed in the optimal elliptic arrangement in comparison to the circular,
show that the elliptical tubes arrangement has better overall performance and lower cost than the traditional circular tubes geometry.
0 2003 Elsevier SAS. All rights reserved.
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1. Introduction in the device containing them. A measure of the evolution
of such equipment, thereforis, the reduction in size, or in
The optimization of industrial processes for maximum occupied volume, accompanied by the maintenance or im-
utilization of the available energy (exergy) has been a very provement of its performance. Hence, the problem consists
active line of scientific resear¢hrecent times. The increase  of identifying a configuration that provides maximum heat
in energy demand in all sectors of the human society re- transfer for a given space, i,enaximum heat transfer den-
quires an increasingly more intelligent use of available en- sity [1].
ergy. Many industrial applications require the use of heat  Heat exchangers with finned elliptical tubes were stud-
exchangers with tubes arrangements, either finned or non-ed experimenta”y by Brauer [2], Bordalo and Saboya [3],
finned, functioning as heat exchangers in air conditioning Saboya and Saboya [4] and Jang and Yang [5]. These stud-
systems, refrigeration, heaseradiators, etc. Such devices jes showed that elliptical tubes exhibit more heat trans-
have to be designed according to the availability of space fer relative to the circular ones, and, in addition, they ex-
hibit a pressure drop reduction of up to 30%: Rocha et
~* Corresponding author. al. [6] developed a hybrid numerical model for finned cir-
E-mail address: dalford@duke.edu (A. Bejan). cular and elliptic tubes arrangements based on energy con-
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Nomenclature
a larger ellipse semi-axis.................... m Re;s Reynolds number based on fin-to-fin spacing,
Ac minimum free flow cross-sectional area. .. 2 m UsoB/V
b smaller ellipse semi-axis.................. m S spacing between rows of tubes, Fig. 1...... m
B, bias limit of quantitya S/D  dimensionless spacing between rows of tubes
cp fluid specific heat at constant (circular arrangement)
_opressure............ kg-1k? S/2b  dimensionless spacing between rows of tubes
C(U) momentum capacity matrix (elliptic arrangement)
D tubediameter.............. ... m ¢ time ... $
D(U) energy capacity matrix tf finthickness .............. ... m
e ellipses eccentricityy/a t tube thickness...............ccciiit, m
F1, F», F3 momentum force vectors T temperature ... K
G energy force vector T average fluid temperature.................. K
H array height............. ... ... M uy,up, u3 velocity components................ .gnl
k fluid thermal conductivity . ...... wn—1l.k-1 Ui, Uz, Uz dimensionless velocity components
Kij viscous stiffness matrices, j =1, 2, 3) U dimensionless velocities tripartitioned vector
Kij penalty matricesi, j = 1, 2, 3) (U1, Us, Us) for X, Y andZ directions,
L arraylength.......... ... ... i m respectively
L diffusive matrix U, uncertainty of quantity:
L/2b  array length to smaller ellipses axis aspectratio W arraywidth.............................. m
m total mass of the arrangement ............. kg x,y,z Cartesiancoordinates..................... m
m dimensionless total mass of the arrangement X, Y, Z dimensionless Cartesian coordinates
T hamel T Creombals
ng number of fins o thermal diffusivity .. ................. fas—1
nt total number of tubes y penalty factor
N number of tubes in one unit cell & mesh convergence criterion, Eq. (25)
Nec number of elemental channels 8 fin-to-finspacing................. .. ... .. n
p Pressure ........oouiiiiiiiinnennn. 2 0 dimensionless temperature
P dimensionless pressure 6 dimensionless average fluid temperature
Pe;, Peclet number based on array length v fluid kinematic viscosity ............. 1
Pr fluid Prandtl numben/« 0 density . ......cooveieiiiia, kg3
P, precision limit of quantity ot dimensionless fin density in directian
q dimensionless overall thermal conductance, .
Subscripts

Eq. (15)
G« dimensionless overall thermal conductance, m maximum

Eq. (19) opt optimal
0 overall heattransferrate .................. W out unit cell outlet
Qec  heat transfer rate of one elemental channel.. W s solid tube wall and fin material
Rep  Reynolds number based on tube diameter, w tube surface

UooD /v 1, 2, 3 directions, y andz
Rer, Reynolds number based on array length,L /v 00 free stream

servation and on heat transfer coefficients obtained exper- Bordalo and Saboya [3] reported pressure drop measure-
imentally by a naphthalene sublimation technique through ments comparing elliptic and circular tube and plate fin
a heat and mass transfer analogy [4,7], and obtained nu-heat exchanger configurations, with one, two and three-row
merically the fin temperature distribution and fin efficiency arrangements. Reductions of up to 30% of the loss coeffi-
in one and two row elliptic tube and plate fin heat ex- cient (pressure drop coefficient per unit row due only to the
changers. The fin efficiency results were then comparedpresence of the tubes) were observed, in favor of the ellip-
with the results of Rosman et al. [8] for plate fin and cir- tic configuration. The comparison was performed between
cular heat exchangers, and a relative fin efficiency gain circular and elliptic arrangements with the same flow ob-
of up to 18% was observed with the elliptical arrange- struction cross-sectional area, for 2Q@Re; < 2000 (18 <
ment. Uoo < 182 m-s~1, with § = 1.65 mm), which cover the air
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velocity range of interest for air conditioning applications. /\
It is further observed that the reduction in pressure drop is H

higher asRe;s increases andagligible forRes ~ 200, for the <
three-row arrangement.

Matos et al. [9], performed a two-dimensional heat trans-
fer analysis of nonfinned circular and elliptic tubes heat ex-
changers. The finite element method was used to discretize
the fluid flow and heat transfer governing equations and a
2-D isoparametric, four-noded, linear element was imple-
mented for the finite element analysis program, FEAP [10].
The numerical results for the equilateral triangle staggering
configuration, obtained with the new element were then val-
idated qualitatively by means of direct comparison to previ-
ously published experimental results for circular tubes heat
exchangers [11]. Numerical geometric optimization results
showed a relative heat transfer gain of up to 13% in the op-
timal elliptical arrangement, as compared to the optimal cir-
cular arrangement. This gain, and the heat transfer gains and
pressure drop reductions observed in previous studies [2-5]
show that the elliptical arrangement has the potential for a
considerably better overall performance than the traditional
circular one.

The main focus of the present work is on the experi-
mental and numerical geometric optimization of staggered Fig. 1. Arrangement of finned elliptic tubes, and the three-dimensional
finned circular and elliptic tubes in a fixed volume to obtain computational domain.
global optima with respect ttube-to-tube spacing, eccen-
tricity and fin-to-fin spacing. Unlike Ref. [9], in this paper The governing equations for mass, momentum and en-
a three-dimensional numerical optimization procedure for ergy conservation are simpéfil in accordance with the as-
finned circular and elliptic arrangements is used. The nu- sumptions of three-dimensional incompressible steady-state
merical results are validatdry means of direct comparison laminar flow with constant properties for a Newtonian fluid,
to experimental measurementssearch the optimal geomet-  €.9., [13]
ric parameters in general staggered finned circularand ellip- 37, dU,  9U3
tic configurations for maximum heat transfer. Circular and 755~ + Y + FY AR )
elliptic arrangements with the same flow obstruction cross- 51/, Uy Uy
sectional area are then compared on the basis of maximumUla—X + U28—Y + Usa—Z
total heat transfer. Appropriate nondimensional groups are
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defined and the optimization results are reported in dimen- =->_ 4+ — |2 14214 % 1 )
2 2 2
sionless charts. 9X Re,| 9X oY 9Z
U 3U2+U 3U2+U oU>
Yax T 7%y T %z
aP 1 [3%Ux  9°Uz  9%Us]
2. Theory __or, 2 22+ 22 n 22 3)
Y ' Rer| 0x2 " ov2 ' 972 |
A typical four-row tube and plate fin heat exchanger ,;, 9U3 +U2% +U3%
with a general staggered configuration is shown in Fig. 1. X aY 0Z
Fowler and Bejan [12] showed that in the laminar regime, 9P 1 [32Us | 8°Us , 9°U3]] 4
the flow through a large bank of cylinders can be simulated ~ 3z Re. | 9x2 Tz T2 | 4)
accurately by calculating the flow through a single channel, 3¢ 90 90
such as that illustrated by the unit cell seen in Fig. 1. BecauseUla—X + U28—Y + Usa—z
of the geometric symmetries, there is no fluid exchange or 2 2 2
. 1 [0°6 a6 a6
heat transfer between adjacent channels, or at the top and = —| — + — + — (5)
; : Pe, [ 0X2  9dY2 9Z2
side surfaces. At the bottom of each unit cell, no heat transfer L

is expected across the plate fin midplane. In Fig.,1# and ~ The dimensionless variables have been defined based on
W are the length, height and width (tube length) of the array, appropriate physical scales,

respectively. The fins are identical, wheres the thickness (x,y,2) p

ands, is the fin-to-fin spacing. XY, 2)=——, P =

(6)

2
pu’,
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,u2, T —T.
(U, Up. Ug) = M1z T =T ®
Uoso Tw — Teo @)
Uso L Uso L
ReL = L’ PeL = ad
v

o

where (x, y,z) are the Cartesian coordinates, is the
pressurep is the fluid densityy  is the free stream velocity, D)
(u1,up, u3) are the fluid velocitiesT is the temperature, = ©
T is the free stream temperaturg, is the tube surface
temperatureL is the array length in the flow directiom,
is the fluid kinematic viscosity, and is the fluid thermal
diffusivity.
Symmetry allows the computational domain to be re-
duced to one unit cell, which is represented by the extended
domain shown in Fig. 1. The height (/2 + ), and the
width is (§/2 + t/2). The computational domain is com-
posed by the external fluid and half of the solid fin. The ®)
solid-fluid interface is included in the solution domain such —
that mass, momentum and energy are conserved throughout
the domain. Egs. (1)—(5) model the fluid part of the domain.
Only the energy equation needs to be solved in the solid part
of the domain, by taking into account for the actual proper-
ties of the solid material. The dimensionless energy equation
for the solid is

0 1 o[9% 0% 0%
0T o ReL v

(E)

— — 8
X2 + Y2 + 972 ®)

wheretr =t/(L/us) is the dimensionless timejs the time, —
ande; is the solid fin thermal diffusivity. Furthermore, for (E)
the steady-state flows considered in this st@dydr = 0. ©
To complete the problem formulation, the following
boundary conditions are then espfied for the extended
three-dimensional computational domain in agreement with %
Fig. 2: )

(A) U,=U3z=0, Up=1, 6=0 (9) (A)‘l
dUp, dU1 06
8Z — 9Z 9z (10) ﬂalf
Wr_dUs_00_ ) B
Yy Yy 9y u,T,
@ Mz 0Us_ 10, )
X X X X
(G) U1=U=U3=0, =1 (13)
(H Ur=U;=U3=0, a9 -0 (14) with the identificati_on_ of fche degrees of freedom (variables)
0Z that allow the maximization of the overall heat transfer rate

Eq. (13) states that the tube walls are modeled as isothermalpetween the tubes and the free stregin,Three geometric
T,, = constant, this in order to account for the presence of degrees of freedom in the arrangement are identified:
a well mixed fluid inside the tubes. In order to represent
the actual flow with boundaryonditions (A) and (F), two (i) the spacing between rows of tubés,
extensions need to be added to the computational domain, (i) the tubes eccentricity, and
upstream and downstream, as shown in Fig. 2. The actual(iii) the fin-to-fin spacingg.
dimensions of these extralengths need to be determined by
an iterative numerical procedure, with convergence obtainedThese parameters follow from the analysis of the two
according to a specified tolerance. extremes, small spacings and large spacings. WhenO,

The objective is to find the optimal geometry, such that the mass flow rate in the elemental channel (sum of all unit
the volumetric heat transfafensity is maximized, subject  cells in directiorz) decreases and, therefor@,— 0. On the
to a volume constraint. The tmization study proceeds other hand, whef§ — Smax (maximum spacing such that the

(B)and (C) U3=0,

(D)and (E) U2=0,

Fig. 2. The boundary conditions ofel8-D computational domain.
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arrangement with a certain number of elemental channels,The dimensionless overall thermal conductance is rewritten
Nec, fits in the available spacé, x H x W), the minimum using Egs. (15)—(17),
free flow cross sectional aret increases, the flow velocity 2
1~ ~ Nec 2b 2b S -

decreases, the heat transfer coefficient decreasesQand ;5= —=prRe;| = | = = + 1) (1 — ¢1)bout (18)
decreases. Whea — 0, the limit of staggered flat plates 2 L] H\2b
is represented [14], s® — Q flat and fore — 1, the where¢r = nts/ W = t/(ts + 8), is the dimensionless fin

plates density in directionz (0 < nfts < W), and Pr the fluid

limit of circular tubes is reached [9,11], 0 — O circular- )
) o . ubes Prandtl numbery/«. To generalize the results of Eq. (18)
This means that the variatioof eccentricity allows the heat for all configurations of the type studied in this work, the

transfer performance of elliptic tubes to be compared with yimensjonless overall thermal conductance is alternatively
flat plates and circular tubes, which is one of the objectives yafined as follows:

of this paper. Whed — 0, the mass flow rate in the unit cell 5

decreases, s@ — 0, and fors§ — Smax= W, the total fin o i[i} " brRe (ﬁ n 1)(1_ #0)fout (19)
surface area decreases, andlecreases. The behavior$if *T Neel2o| 2277 "\ 2» Pout

e ands at the extremes indicate the possibility of maximum The mass fraction occupied by solid material is
Qintheintervals,0< S < Smax, 0<e<land0<§ < W.

A comparison criterion between elliptic and circular 5 — " _ K[nm(ab(a_,t)(b_,t))
arrangements with the same flow obstruction cross-sectional ~ AsL® L3
area is adopted, i.e., the circular tube diameter is equal + ¢t(LH — nyrab) ] (20)

tobtwo rt]lmes the smaéler elrl]|_pse_se_m|—a}X|shof the _E!:!pt'c wherer,; is the thickness of the tube wall, andis the total
tube. The reason to adopt this criterion is the possibility to |\, - ber tubes of the arrangement.

obtain equivalent pressure drops in both arrangements, to be

able to quantify the heat transfer gain in the clearest way

possible. As pointed out earlier in the text, the difference 3. Numerical method
in pressure drop for elliptic and circular arrangements with

identical flow obstruction cross-sectional areas Res < The numerical solution to Egs. (1)—(14) was obtained by

_200 is negligible [3], which is also verif_ied gxperimentally using the finite element method [10], giving the velocities

in the laboratory for all cases analyzed in this paper. and temperature fields in the unit cell of Fig. 2. The first
Once the geometry of the extended computational do- giep in the numerical implementation was the elimination of

main represente(_j by the unit .ceII of F!g. 2 is specified, e pressure variable from Eqgs. (2)—(4), by using a penalty

Egs. (1)—(14) deliver the resulting velocities, pressure and model, approximating Eq. (1) as [15],

temperature fields in the domain. The dimensionless overall U, U »

thermal conductancé, or volumetric heat transfer density !

— et —F —=—— (21)
is defined as follows [9,11]: oX oY  9Z Y
wherey is the penalty factor, which must be assumed large
~ Q/(Tw - Too) i i i i
== (15) enough in order to satisfy mass conservation approximately.
kLHW/(2b) The implementation of the finite element method for the

solution of Eqgs. (1)—(5) and (8) starts from obtaining the
ariational (weak) form of the problem. The weak form is
discretized with an ‘upwind’ scheme proposed by Hughes
[16], where it is possible to match the discrete form of the
problem to the physical characteristics of the flow. After
developing the discrete form of the problem, the resulting
. — algebraic equations are arranged in matrix form for the
Q = NecQec= Neditecp (Tout — Too) (16) steady-state three-dimensional problem, as follows:

where the overall heat transfer rate between the finned tube
and the free strear@ is divided by the constrained volume
LHW,  is the fluid thermal conductivity, andb2= D is the
smaller axis of the ellipse or tube diameter. The first law for
one elemental channel requires

mental channel is defined as the sum of all unit cells in the | © C(g” CON Uy
directionz. Thereforejiec = pucol(S + 2b) /2[(W — nstt) W11
is the mass flow rate entering one elemental channeis N |:2K11+K22+K33 K12 K13 }

where Ngc is the number of elemental channels. The ele- [C(U) 0 0 } {01}

the fluid specific heat at constant pressure, Bglis the av- Ka1 K11+ 2K22+ Ka3 Kas
. K31 K32 K11+ K22+ 2K33
erage fluid temperature at thlEemental channel outlet. The i o R R G -
e i e A U1 K11 K12 Kag 1 1
number of fins in the arrangement is given by % { 0 } i [@21 K22 @23] : 0 } _ : o } (22)
Us K31 K32 K33 Uz F3
W
T +8

n (17) DO +LT =G (23)



482 R.S Matos et al. / International Journal of Thermal Sciences 43 (2004) 477487

~ i 2000
where C(U) is the capacity matrix that contains the ad- }-1007—200»«350 200 ‘ 1000 150+

vective terms of the momentum equations, which depends power
nonlinearly on the solutior/ (tripartitioned vector: Ur- source cloctnic power
direction X, U»-directionY and Us-direction Z, each one resistance source
with a number of components equal to the number of un-

knowns in the mesh)X11, K12, K13, K21, K22, K23, K31, . au test extended flow
K32 and K33 are the stiffness matrices with constant coef- module _region straightener
ficients (constant V|sc05|ty) that contaln the wscous terms —|— -
of the ‘momentum equatlonﬂ'll, K12, K13, K21, K22, K23, 650
K31, K32 and K33 are the penalty matrices, that contain the
terms due to the elimination of the pressure variable from
the momentum equations by using Eg. (21), which must be ———— :
computed with reduced integration (one point in each direc- Jifferential T4,Ts
tion with linear shape functions) to avoid lockingy(U) is pressure transducer| ; - [anemonmeter]
the capacity matrix that contzs the advective terms of the T T2
energy equatior, is the diffusive matrix with constant coef- [connecting]
ficients (constant thermal conductivity), which contains the hub
diffusive terms from the energy equatiaf;, F» and F3 are i
the force vectors of the momentum equations that contain PC
the field forces and the velocity boundary conditions, &nd computer
is the force vector of the energy equation that contains the
heat source terms of the energy equation and the tempera-
ture boundary conditions.

For the 3-D problem of Fig. 1, the computational domain
contains both the external fluid and the solid fin. Thus, the the test module, Fig. 3. The internal dimensions of the test
solution of Eq. (8) is also required in order to obtain the com- section are 175 161x 152 mm. An extended region of
plete temperature field. Insteafisolving separately for the 1000 mm was placed before the test section to allow the flow
two entities (fluid and solid) and imposing the same heat flux to develop fully before reaching the arrangement. A flow
at the interface solid-fluidas a boundary condition, the so- straightener consisting of plastic straws was installed at the
lution is sought for the entire domain, simultaneously, with entrance of the extended region with the purpose of laminar-
the same set of conservation equations, imposing zero ve-zing the flow, Fig. 3.
locities in the solid fin and the appropriate constant coeffi- ~ The circular and elliptic tube arrangements were made
cients for the solid fin in the diffusive matrix,, in Eq. (23), from copper circular tubes with diameters of 15.87539,
which are obtained from Eq. (8). For the sake of brevity, 22.23 (78"), 25.4 (I') and 28.58 mm (148") which
the mathematical details of the components of the above de-resulted in tubes with eccentricities= 1.0, 0.6, 0.5 and
scribed matrices are not presented. However, the reader id.4, respectively. The wall thickness was 0.794 mp8¢l)
directed to the work of Reddy and Gartling [15], which was for all eccentricities. To construct the elliptic arrangements,
the basis for the formulation implemented computationally the circular tubes were shaped in the machine shop by using
in the present study. A Fortran subroutine was written to im- an appropriately designed tool. All the tubes had a length
plement the Navier—Stokes and energy equations in two andof 172 mm. Electric heaters weplaced inside the tubes to
three dimensions as isoparametric, four and eight-noded, lin-simulate the heat flux originated from a hot fluid. All the
ear elements, respectively, igh were then aggregatedtothe arrangements had 4 rows of tubes counted in the direction
open code FEAP [10]. of the external flow, in Fig. 1. Twelve tubes were then

assembled, in a wooden drawer, which is the test module
shown in Fig. 3. All the fins were made from aluminum
4. Experiments plates with dimensions of 150 130x 0.3 mm.
The electric heaters consisted of double step tubular

An experimental apparatus was built in the laboratory to electric resistances with 988, therefore, with a maximum
produce the necessary experimental data to validate the 3-Dpower dissipation of 50 W with 220 V. The electric heaters
numerical optimization of finned arrangements, and to per- had a small enough diameter to be fitted into the copper
form the experimental optimization of finned arrangements. tubes, and were fed with a variable voltage source (30 V,
Fig. 3 shows the main features of the experimental appara-1.4 A), so that all the arrangements have the same power
tus utilized in this study. A small scale wind tunnel was built input.
from naval plywood to prevent deformation due to humidity. Twelve high precision thermistors of type YSI 44004
A test section was designed in modular form as a drawer, (resistance 225 at 25°C) were placed inside each test
to allow the testing many configurations just by changing module. All the thermistors ®re placed in the midplane

air u,
flow

=N
=
[e]

r._
|
|

Ap

Fig. 3. Experimental apparatus.
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between the side walls of the wind tunnel and at the midline  The objective of the experimental work was to evaluate
of the elemental channels. Three thermistors were placedthe volumetric heat transfer density (or overall thermal
at the inlet (T1-T3), five at the outlet (T8-T12), and four conductance) of each tested arrangement by compgting
at the tube surfaces in one elemental channel (T4-T7). Anwith Eq. (19) through direct measurementsgf(Re. ), and
additional thermistor (T13) was placed at the midpoint of Tout, 7w and Tso(6oup. Five runs were conducted for each
the extended region to measure the free stream temperatureexperiment. Steadgtate conditions were reached after 3hin
The thermistors at the inlet and outlet of the arrangementall the experiments. The presin limit for each temperature
permitted the determination of the vertical variation of pointwas computed as two times the standard deviation of
temperature in the arrangement. In all the tests performed,the 5 runs [21]. It was verified that the precision limits of all
the vertical temperates remained within &0.5°C margin ~ Variables involved in the calculation gf. were negligible
with respect to the average (vertical) temperatures calculatedn presence of the precision limit @byt The thermistors,

at the inlet and outlet. The thermistors on the tube surfaces@nemometer, properties and lengths bias limits were found
showed that the temperature difference between tubes in ond'€gligible in comparison with the precision limit §f. As a
elemental channel is negligible, namely, withii9.3°C of ~ result the uncertainty af. was calculated from

the measured average of the four thermistors. Finally, the U,  Papu

additional thermistor placed at the extended region measuredq_* = Pout (24)

free stream temperatures within0.5°C of the measured _

average arrangement inlet temperature. whereP;  is the precision limit ofiout.

Velocity measurements were made with a vane-type dig-  FOr @ particular tube and plate fin geometry, the tests
ital anemometer, model HHF 300A (OMEGA Engineering s_tarted with an eqwlateral tnangle conﬂggratlon, _wh|ch
Inc.), which was placed at the extended flow region, as f|I_Ied regularlythe fixed volume,\_/wth a resulting maximum
shown in Fig. 3. For the range of 0.1 to 35sTt, the ve- dimensionless tube-to-tube spacsy®b = 1.5. The spacing
locity bias limit is +2.5% of the reading. The free stream Petween tubes was then reduced stepvigéb = 1.5, 0.5,
velocity was 0.1 and 0.13 s in this study. To allow for 0.25 and~0.1. In th|s_|nterval an optimal spacing was found
the continuous variation of the fan velocity, a variable power SUCh that, was maximum. All the tested arrangements had

source with 30 V and maximum current 2 A was used. theTasp?ct rat't@/Zb - 8|'52.i. test — 041 and
The pressure drop measurements were taken with a presb 1 SW?n rie S rreram Vﬁ dci)rc1| ne;qweri 8e5326d>; d_ 1 O 65anr

sure transducer, model PX137-0.3DV (OMEGA Engineer- ~ =~ . S - correspo g taze, = a >, fe-

) . : . spectively. The largest unceitity calculated according to

ing Inc.), with a nominal range of (0-2068.5 Pa), which Eq. (24) in all tests wad, /G, — 0.048

was connected to a digital pressure meter, model DP25B-S 9 Gul @x = BHTC

(OMEGA Engineering Inc.). The differential pressure max-

imum bias limit is 1% of the reading. The dlffere_n'gal 5 Resultsand discussion

pressure measurements had the purpose of determining the

pressure drop across each agament in all experiments,

Fig. 3 The results obtained in this study are divided in two

parts: (i) experimental validation of 3-D numerical results

The experimental work involved the acquisition of tem- (. finned arrangements, and (ii) global optimization results
perature data in real time. This task was performed through, .., respect to tube-to-tube spacing, eccentricity and fin
the utilization of a computational data acquisition system density.

which consisted of a virtual data logger AX 5810 [17] and The nonlinear system of Egs. (22) and (23) was solved by
four multiplexers AX758 [18] which allowed for the sequen- e Newton—Raphson methot5], to obtain the velocities
tial data acquisition from 64 channels at time intervals of 54 temperatures in the computational domain of Fig. 2. The
1/256 s. All the data were processed by a suitable software gimensionless temperatures at the elemental channel outlet
application to convert the sensors signals in readable tem-yere used to compute the dimensionless volumetric heat
peratures. transfer densityj, defined by Eq. (19).

The thermistors were calibrated in the laboratory o The numerical results obtained with Eq. (19) are expected
determine the bias limits. The thermistors were immersed in tg be more accurate than the uéis that would be obtained
a constant temperature bath maintained by a bath circulatoryy computing the sum of heat fluxes at the tubes surfaces in
and a total of 64 temperature measurements were madehe elemental channel. The reason is that the former are ob-
between 20 and 8T, at 10°C increments. The largest tained from the finite elemen¢mperature solution, whereas
standard deviation of these measurements was 0:@05 the latter are obtained from temperature spatial derivatives,
and, therefore, the bias limit was set #0.001°C for which are computed from posticessing the finite element
all thermistors. This bias limit is in agreement with the solution. It is well known that the numerical error in the
+0.0003°C of the same thermistors in a natural convection derivative of the solution is larger than the numerical error in
experiment [19] and with th&-0.0005°C bias limit listed in the solution itself. To obtaiaccurate numerical results, sev-
an instrumentation handbook [20]. eral mesh-refinement tests were conducted. The monitored
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guantity was the dimensionless overall thermal conductance,
computed with Eg. (19), accargy to the following crite-
rion:

€ =1qx,j = Gx.j-1l/1Gx,j1 < 0.02 (25)

where j is the mesh iteration index, such thaincreases
when the mesh is more refined. When the criterion is satis-
fied, thej — 1 mesh is selected as the converged mesh.

Criterion (25) was used to find the appropriate length
to the extension domain defined in the unit cell of Fig. 2.
The numerical results obtained with an extensionwere
compared with the numerical results obtained with an
extension of 3./2, and satisfied the criterion of Eq. (25),
by replacing the subscript with 3L/2 and the subscript
Jj — 1 with L. Therefore, the use of an extensibrupstream
and downstream of the unit cell was found to be the
appropriate to represent the actual flow. Nonregular meshes
were used, such that mesh-regions close to the tubes were
more refined, to account for the highest gradients in the
solution. The last three mesh iterations had (a) 12780 nodes
and 9600 elements; (b) 17160 nodes and 13200 elements,
and (c) 23166 nodes and 18480 elements, with a relative
error below 4% when (a) and (b) are compared, and below
2% when (b) and (c) are compared, according to Eq. (25).
Therefore, in all the cases the selected mesh consisted of
17160 nodes and 13200 elements. A sample of converged
mesh used in this work is shown in Fig. 4.

The numerical results obtad with the finite element
code were validated by direct comparison to experimental
results obtained in the laboratory for circular and elliptic
arrangements. According to Fig. 1, the dimensions of the
fixed volume during experimental optimization wete=
13533 mm,H = 11509 mm,W =152 mm andD = 2b =
15.875 mm. All the arrangements haé,c = 6 andN =4,
whereN is the number of tubes in one unit cell.

The numerical and experimehbptimization procedures
followed the same steps. First, for a given eccentricity,
the dimensionless overall thermal conductangg, was «l
computed with Eq. (19), for the rangelG< S/2b < 1.5. The )_7
same procedure was repeatedder 0.45, 0.5, 0.6 and 1. ke

Results were obtained for the laminar reginie( =
852 and 1065). Figs. 5-8 show the optimization results
for finned arrangement®; = 0.006) with respect to tube-
to-tube spacing,S/2b, for eccentricitiese = 1, 0.6, 0.5  Rey =852 and 1065. Thé. m values obtained numerically
and 0.45, respectively. Exparental measurements were not and experimentally are in good agreement. The agreement
conducted fore = 0.45, therefore, only numerical results is remarkable if we consider that in the experiments the
are shown in Fig. 8. There is good agreement betweentested arrays had uniform heat flux, and did not contain
experimental and numerical results, mainly with respect to many cylinders. In the numerical simulations the domain
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Fig. 4. Sample of converged megh=0.5).

the location of the optimal spacing,/2b = 0.5, for all was infinitely wider (i.e., no influence from the wind tunnel
eccentricities therefore validating the numerical results. The walls) and with isothermal tubes. An optimal eccentricity
influence of the variation dRe; is also investigated. ARey, was not obtained experimentally, since an arrangement with
increasesy, increases. e < 0.5 was not built. However, the numerical results were

The numerical and experimental double optimization validated by the good agreement with the experimental
results for finned tubegps = 0.006) with respect to tube-  results fore = 0.5, 0.6 and 1. Hence, the numerical results
to-tube spacings and eccentricities are shown in Fig. 9, obtained fore = 0.45 are also expected to be accurate. At
together with the corresponding experimental results, for e = 0.45, .. m drops considerably with respect éo= 0.5,
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Fig. 6. Numerical and experimental optimization results for finned elliptic Fig. 8. Numerical optimization results for finned elliptic arrangements

arrangementsge = 0.6).

determining an optimal paitS/2b, e)opt= (0.5, 0.5) for the

twice maximized overall heat transi@f mm.

elliptic configuration with the optimal circular one. Note
that g..m for the elliptic arrangemente = 0.5) optimized
with respect to tube-to-tube spacing is higher tliam
for the circular arrangemen = 1) for all fin densities,

than the circular one at optimal conditions, i.e., at the
optimal pair (S/2b, ¢f)opt. It is possible to determine the

(e = 0.45).

total mass of material in dimensionless terms [via Eq. (20)
at(S/2b, ¢f)opy for both arrangements. The result is that the
Fig. 10 shows an intermediate step in the optimization total dimensionless mass of the optimal elliptic arrangement
procedure, to facilitate the comparison between the optimal is 32% smaller than the optimal circular arrangement.
Fig. 11 reports the results of global optimization with
respect to the three degrees of freedo$i2b, ¢ and
¢fr. An optimal set of geometric parameters was deter-
mined numerically such thgt. was maximized three times:
¢¢. Furthermore, the elliptic configuration requires less fins (S/2b, e, ¢5)opt = (0.5, 0.5, 0.06).
Fig. 12 shows the temperature distribution of plate fins
for four-row heat exchangers for circular and elliptic=
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Fig. 10. Comparison of the numerical optimization results for finned

circular and elliptic arrangements.

0.5) tubes,S/2b = 0.5, ¢ = 0.006, and withRe; = 852.
The effect of the variation foeccentricity is observed by
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Fig. 11. Numerical global optimiz@an results for finned arrangements.

cal solutions becomes increasingly more difficult, indicating
the flow is reaching a regime of transition to turbulence.

6. Conclusions

In this paper, a combined numerical and experimental
study was conducted to demonstrate that finned circular and
elliptic tubes heat exchangers can be optimized for max-
imum heat transfer, under a fixed volume constraint. The
internal geometric structure of the arrangements was opti-
mized for maximum heat transf@etter global performance
is achieved when flow and heaatrsfer resistances are min-
imized together, i.e., when the imperfection is distributed
optimally in the available space [1]. Optimal distribution of
imperfection represents flow architecture, or constructal de-
sign.

The results were presented nondimensionally to permit
the general application to heatchangers of the type treated
in this study. A suitable equivalent pressure drop criterion
permitted the comparison between circular and elliptic
arrangements on a heat transfer basis in the most isolated
way possible. The optimal elliptic arrangement exhibits a
heat transfer gain of up to 19% relative to the optimal

comparing cases (a) and (b) in Fig. 12. It is also shown that circular tube arrangement. The heat transfer gain and the
the elliptical arrangement is more efficient than circular one. relative total dimensionless material mass reduction of up
This is due to the fact that the fin temperature distribution is to 32% show that the elliptical arrangement has the potential

more uniform in the elliptic configuration than in the circular

to deliver considerably higher global performance and lower

one, and closer to tube wall temperature, characterizing acost.
better thermal contact between the tubes and the fluid in the  Three degrees of freedom were investigated in the heat

elliptic arrangement.

exchanger geometry: tube-tube spacing, eccentricity and

Because the governing equations are for the laminar fin-to-fin spacing. Global optima were found with respect to
regime, the results of Figs. 5-12 were obtained for low tube-to-tube spacing, eccentricépd fin-to-fin spacing, i.e.,

Reynolds numbers, or small dimensiof&; = 852 and

(S/2b. e. $t)opt = (0.5,0.5,0.06) for Re; = 852 and 1065.

1065. For higher Reynolds numbers, convergence to numeri-Such globally optimized configurations are expected to be
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)

Fig. 12. Fin temperature distribution fapdr-row tubes and plate fin heat exchangers:S(&p = 0.5, ¢ = 1, (¢ = 0.006) andRe;, = 852; (b) S/2b = 0.5,
e =0.5, (¢f = 0.006 andRe;, = 852.
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