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Abstract

This paper presents a three-dimensional numerical and experimental geometric optimization study to maximize the total heat tr
between a bundle of finned tubes in a given volume and external flow, for staggered arrangements of circular and elliptic tubes. Experimenta
results were obtained for circular and elliptic configurations with twelve tubes, starting with an equilateral triangle configuration, wh
uniformly into the fixed volume with a resulting optimal dimensionless tube-to-tube spacing ofS/2b = 1.5, whereS is the actual spacing an
b is the smaller semi-axis of the ellipse. Several experimental configurations were built by reducing the tube-to-tube spacings, i
the optimal spacing for maximum heat transfer. Similarly, it was possible to investigate the existence of optima with respect to t
geometric degrees of freedom, such as tube eccentricity and fin-to-fin spacing. The results are reported for air as the external fluid in
laminar regime, forReL = 852 and 1065, whereL is the swept length of the fixed volume. Circular and elliptic arrangements with the
flow obstruction cross-sectional area were compared on the basis of maximizing the total heat transfer. This criterion allows one
and quantify the heat transfer gain, by studying arrangements with equivalent total pressure drops independently of the tube cr
shape. This paper continues with three-dimensional numerical optimization results for finned circular and elliptic tubes arrangeme
are validated by direct comparison with experimental measurements. Global optima with respect to tube-to-tube spacing, eccentric
fin-to-fin spacing (S/2b ∼= 0.5, e ∼= 0.5,φf

∼= 0.06 forReL = 852 and 1065) were found and reported in dimensionless terms. A relative
transfer gain of up to 19% is observed in the optimal elliptic arrangement, as compared to the optimal circular one. The heat tran
combined with the relative material mass reduction of up to 32% observed in the optimal elliptic arrangement in comparison to the
show that the elliptical tubes arrangement has better overall performance and lower cost than the traditional circular tubes geome
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

The optimization of industrial processes for maximu
utilization of the available energy (exergy) has been a v
active line of scientific researchin recent times. The increas
in energy demand in all sectors of the human society
quires an increasingly more intelligent use of available
ergy. Many industrial applications require the use of h
exchangers with tubes arrangements, either finned or
finned, functioning as heat exchangers in air condition
systems, refrigeration, heaters, radiators, etc. Such devic
have to be designed according to the availability of sp
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-

in the device containing them. A measure of the evolu
of such equipment, therefore,is the reduction in size, or in
occupied volume, accompanied by the maintenance or
provement of its performance. Hence, the problem con
of identifying a configuration that provides maximum he
transfer for a given space, i.e., maximum heat transfer den
sity [1].

Heat exchangers with finned elliptical tubes were st
ied experimentally by Brauer [2], Bordalo and Saboya
Saboya and Saboya [4] and Jang and Yang [5]. These
ies showed that elliptical tubes exhibit more heat tra
fer relative to the circular ones, and, in addition, they
hibit a pressure drop reduction of up to 30%: Rocha
al. [6] developed a hybrid numerical model for finned c
cular and elliptic tubes arrangements based on energy
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Nomenclature

a larger ellipse semi-axis. . . . . . . . . . . . . . . . . . . . m
Ac minimum free flow cross-sectional area . . . . m2

b smaller ellipse semi-axis . . . . . . . . . . . . . . . . . . m
Ba bias limit of quantitya
cp fluid specific heat at constant

pressure . . . . . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

C(Ũ) momentum capacity matrix
D tube diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
D̃(Ũ) energy capacity matrix
e ellipses eccentricity,b/a

F1, F2, F3 momentum force vectors
G energy force vector
H array height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
k fluid thermal conductivity . . . . . . . W·m−1·K−1

Kij viscous stiffness matrices(i, j = 1,2,3)

K̂ij penalty matrices(i, j = 1,2,3)

L array length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
L̃ diffusive matrix
L/2b array length to smaller ellipses axis aspect ratio
m total mass of the arrangement . . . . . . . . . . . . . kg
m̃ dimensionless total mass of the arrangement
ṁec fluid mass flow rate entering one elemental

channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·s−1

nf number of fins
nt total number of tubes
N number of tubes in one unit cell
Nec number of elemental channels
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . N·m−2

P dimensionless pressure
PeL Peclet number based on array length
Pr fluid Prandtl number,ν/α

Pa precision limit of quantitya
q̃ dimensionless overall thermal conductance,

Eq. (15)
q̃∗ dimensionless overall thermal conductance,

Eq. (19)
Q overall heat transfer rate . . . . . . . . . . . . . . . . . . W
Qec heat transfer rate of one elemental channel . . W
ReD Reynolds number based on tube diameter,

u∞D/ν

ReL Reynolds number based on array length,u∞L/ν

Reδ Reynolds number based on fin-to-fin spacing,
u∞δ/ν

S spacing between rows of tubes, Fig. 1 . . . . . . m
S/D dimensionless spacing between rows of tubes

(circular arrangement)
S/2b dimensionless spacing between rows of tubes

(elliptic arrangement)
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
tf fin thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
tt tube thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
�T average fluid temperature. . . . . . . . . . . . . . . . . . K
u1, u2, u3 velocity components . . . . . . . . . . . . . . . . m·s−1

U1, U2, U3 dimensionless velocity components
Ũ dimensionless velocities tripartitioned vector

(Ũ1, Ũ2, Ũ3) for X, Y andZ directions,
respectively

Ua uncertainty of quantitya
W array width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
x, y, z Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . m
X, Y , Z dimensionless Cartesian coordinates

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s−1

γ penalty factor
ε mesh convergence criterion, Eq. (25)
δ fin-to-fin spacing . . . . . . . . . . . . . . . . . . . . . . . . . m
θ dimensionless temperature
θ̄ dimensionless average fluid temperature
ν fluid kinematic viscosity . . . . . . . . . . . . . m2·s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

φf dimensionless fin density in directionz

Subscripts

m maximum
opt optimal
out unit cell outlet
s solid tube wall and fin material
w tube surface
1, 2, 3 directionsx, y andz

∞ free stream
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servation and on heat transfer coefficients obtained ex
imentally by a naphthalene sublimation technique thro
a heat and mass transfer analogy [4,7], and obtained
merically the fin temperature distribution and fin efficien
in one and two row elliptic tube and plate fin heat e
changers. The fin efficiency results were then compa
with the results of Rosman et al. [8] for plate fin and c
cular heat exchangers, and a relative fin efficiency g
of up to 18% was observed with the elliptical arrang
ment.
-

Bordalo and Saboya [3] reported pressure drop meas
ments comparing elliptic and circular tube and plate
heat exchanger configurations, with one, two and three
arrangements. Reductions of up to 30% of the loss co
cient (pressure drop coefficient per unit row due only to
presence of the tubes) were observed, in favor of the e
tic configuration. The comparison was performed betw
circular and elliptic arrangements with the same flow
struction cross-sectional area, for 200� Reδ � 2000 (1.8 �
u∞ � 18.2 m·s−1, with δ = 1.65 mm), which cover the ai
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velocity range of interest for air conditioning application
It is further observed that the reduction in pressure dro
higher asReδ increases and negligible forReδ ∼ 200, for the
three-row arrangement.

Matos et al. [9], performed a two-dimensional heat tra
fer analysis of nonfinned circular and elliptic tubes heat
changers. The finite element method was used to discr
the fluid flow and heat transfer governing equations an
2-D isoparametric, four-noded, linear element was imp
mented for the finite element analysis program, FEAP [1
The numerical results for the equilateral triangle stagge
configuration, obtained with the new element were then
idated qualitatively by means of direct comparison to pre
ously published experimental results for circular tubes h
exchangers [11]. Numerical geometric optimization res
showed a relative heat transfer gain of up to 13% in the
timal elliptical arrangement, as compared to the optimal
cular arrangement. This gain, and the heat transfer gains
pressure drop reductions observed in previous studies [
show that the elliptical arrangement has the potential f
considerably better overall performance than the traditio
circular one.

The main focus of the present work is on the exp
mental and numerical geometric optimization of stagge
finned circular and elliptic tubes in a fixed volume to obt
global optima with respect totube-to-tube spacing, ecce
tricity and fin-to-fin spacing. Unlike Ref. [9], in this pap
a three-dimensional numerical optimization procedure
finned circular and elliptic arrangements is used. The
merical results are validatedby means of direct compariso
to experimental measurementsto search the optimal geome
ric parameters in general staggered finned circular and e
tic configurations for maximum heat transfer. Circular a
elliptic arrangements with the same flow obstruction cro
sectional area are then compared on the basis of maxi
total heat transfer. Appropriate nondimensional groups
defined and the optimization results are reported in dim
sionless charts.

2. Theory

A typical four-row tube and plate fin heat exchang
with a general staggered configuration is shown in Fig
Fowler and Bejan [12] showed that in the laminar regim
the flow through a large bank of cylinders can be simula
accurately by calculating the flow through a single chan
such as that illustrated by the unit cell seen in Fig. 1. Beca
of the geometric symmetries, there is no fluid exchang
heat transfer between adjacent channels, or at the top
side surfaces. At the bottom of each unit cell, no heat tran
is expected across the plate fin midplane. In Fig. 1,L, H and
W are the length, height and width (tube length) of the ar
respectively. The fins are identical, wheret is the thickness
andδ, is the fin-to-fin spacing.
d
]

d

Fig. 1. Arrangement of finned elliptic tubes, and the three-dimensi
computational domain.

The governing equations for mass, momentum and
ergy conservation are simplified in accordance with the a
sumptions of three-dimensional incompressible steady-
laminar flow with constant properties for a Newtonian flu
e.g., [13]

∂U1

∂X
+ ∂U2

∂Y
+ ∂U3

∂Z
= 0 (1)

U1
∂U1

∂X
+ U2

∂U1

∂Y
+ U3

∂U1

∂Z

= −∂P

∂X
+ 1

ReL

[
∂2U1

∂X2 + ∂2U1

∂Y 2 + ∂2U1

∂Z2

]
(2)

U1
∂U2

∂X
+ U2

∂U2

∂Y
+ U3

∂U2

∂Z

= −∂P

∂Y
+ 1

ReL

[
∂2U2

∂X2 + ∂2U2

∂Y 2 + ∂2U2

∂Z2

]
(3)

U1
∂U3

∂X
+ U2

∂U3

∂Y
+ U3

∂U3

∂Z

= −∂P

∂Z
+ 1

ReL

[
∂2U3

∂X2 + ∂2U3

∂Y 2 + ∂2U3

∂Z2

]
(4)

U1
∂θ

∂X
+ U2

∂θ

∂Y
+ U3

∂θ

∂Z

= 1

PeL

[
∂2θ

∂X2 + ∂2θ

∂Y 2 + ∂2θ

∂Z2

]
(5)

The dimensionless variables have been defined base
appropriate physical scales,

(X,Y,Z) = (x, y, z)
, P = p

2 (6)

L ρu∞
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(U1,U2,U3) = (u1, u2, u3)

u∞
, θ = T − T∞

Tw − T∞

ReL = U∞L

ν
, PeL = U∞L

α

(7)

where (x, y, z) are the Cartesian coordinates,p is the
pressure,ρ is the fluid density,u∞ is the free stream velocity
(u1, u2, u3) are the fluid velocities,T is the temperature
T∞ is the free stream temperature,Tw is the tube surface
temperature,L is the array length in the flow direction,ν
is the fluid kinematic viscosity, andα is the fluid thermal
diffusivity.

Symmetry allows the computational domain to be
duced to one unit cell, which is represented by the exten
domain shown in Fig. 1. The height is(S/2 + b), and the
width is (δ/2 + t/2). The computational domain is com
posed by the external fluid and half of the solid fin. T
solid-fluid interface is included in the solution domain su
that mass, momentum and energy are conserved throug
the domain. Eqs. (1)–(5) model the fluid part of the dom
Only the energy equation needs to be solved in the solid
of the domain, by taking into account for the actual prop
ties of the solid material. The dimensionless energy equa
for the solid is

∂θ

∂τ
= 1

ReL

αs

ν

[
∂2θ

∂X2
+ ∂2θ

∂Y 2
+ ∂2θ

∂Z2

]
(8)

whereτ = t/(L/u∞) is the dimensionless time,t is the time,
andαs is the solid fin thermal diffusivity. Furthermore, fo
the steady-state flows considered in this study,∂θ/∂τ = 0.

To complete the problem formulation, the followin
boundary conditions are then specified for the extende
three-dimensional computational domain in agreement
Fig. 2:

(A) U2 = U3 = 0, U1 = 1, θ = 0 (9)

(B) and (C) U3 = 0,
∂U2

∂Z
= ∂U1

∂Z
= ∂θ

∂Z
= 0 (10)

(D) and (E) U2 = 0,
∂U1

∂Y
= ∂U3

∂Y
= ∂θ

∂Y
= 0 (11)

(F)
∂U1

∂X
= ∂U2

∂X
= ∂U3

∂X
= ∂θ

∂X
= 0 (12)

(G) U1 = U2 = U3 = 0, θ = 1 (13)

(H) U1 = U2 = U3 = 0,
∂θ

∂Z
= 0 (14)

Eq. (13) states that the tube walls are modeled as isothe
Tw = constant, this in order to account for the presenc
a well mixed fluid inside the tubes. In order to repres
the actual flow with boundary conditions (A) and (F), two
extensions need to be added to the computational dom
upstream and downstream, as shown in Fig. 2. The ac
dimensions of these extralengths need to be determine
an iterative numerical procedure, with convergence obta
according to a specified tolerance.

The objective is to find the optimal geometry, such t
the volumetric heat transferdensity is maximized, subjec
to a volume constraint. The optimization study proceed
t

l,

,
l

Fig. 2. The boundary conditions of the 3-D computational domain.

with the identification of the degrees of freedom (variabl
that allow the maximization of the overall heat transfer r
between the tubes and the free stream,Q. Three geometric
degrees of freedom in the arrangement are identified:

(i) the spacing between rows of tubes,S;
(ii) the tubes eccentricity,e, and
(iii) the fin-to-fin spacing,δ.

These parameters follow from the analysis of the t
extremes, small spacings and large spacings. WhenS → 0,
the mass flow rate in the elemental channel (sum of all
cells in directionz) decreases and, therefore,Q → 0. On the
other hand, whenS → Smax (maximum spacing such that th
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arrangement with a certain number of elemental chann
Nec, fits in the available space,L × H × W ), the minimum
free flow cross sectional areaAc increases, the flow velocit
decreases, the heat transfer coefficient decreases, aQ

decreases. Whene → 0, the limit of staggered flat plate
is represented [14], soQ → Q flat

plates
, and for e → 1, the

limit of circular tubes is reached [9,11], soQ → Q circular
tubes

.

This means that the variation of eccentricity allows the hea
transfer performance of elliptic tubes to be compared w
flat plates and circular tubes, which is one of the object
of this paper. Whenδ → 0, the mass flow rate in the unit ce
decreases, soQ → 0, and forδ → δmax = W , the total fin
surface area decreases, andQ decreases. The behavior ofS,
e andδ at the extremes indicate the possibility of maximu
Q in the intervals, 0< S < Smax, 0< e < 1 and 0< δ < W .

A comparison criterion between elliptic and circu
arrangements with the same flow obstruction cross-sect
area is adopted, i.e., the circular tube diameter is e
to two times the smaller ellipse semi-axis of the ellip
tube. The reason to adopt this criterion is the possibility
obtain equivalent pressure drops in both arrangements,
able to quantify the heat transfer gain in the clearest
possible. As pointed out earlier in the text, the differen
in pressure drop for elliptic and circular arrangements w
identical flow obstruction cross-sectional areas forReδ <

200 is negligible [3], which is also verified experimenta
in the laboratory for all cases analyzed in this paper.

Once the geometry of the extended computational
main represented by the unit cell of Fig. 2 is specifi
Eqs. (1)–(14) deliver the resulting velocities, pressure
temperature fields in the domain. The dimensionless ov
thermal conductancẽq , or volumetric heat transfer densi
is defined as follows [9,11]:

q̃ = Q/(Tw − T∞)

kLHW/(2b)2
(15)

where the overall heat transfer rate between the finned t
and the free streamQ is divided by the constrained volum
LHW, k is the fluid thermal conductivity, and 2b = D is the
smaller axis of the ellipse or tube diameter. The first law
one elemental channel requires

Q = NecQec = Necṁeccp(�Tout − T∞) (16)

whereNec is the number of elemental channels. The e
mental channel is defined as the sum of all unit cells in
directionz. Therefore,ṁec = ρu∞[(S + 2b)/2](W − nf tf)

is the mass flow rate entering one elemental channel,cp is
the fluid specific heat at constant pressure, and�Tout is the av-
erage fluid temperature at the elemental channel outlet. Th
number of fins in the arrangement is given by

nf = W
(17)
tf + δ
l

The dimensionless overall thermal conductance is rewr
using Eqs. (15)–(17),

q̃ = Nec

2
Pr ReL

[
2b

L

]2 2b

H

(
S

2b
+ 1

)
(1− φf)θ̄out (18)

whereφf = nf tf/W = tf/(tf + δ), is the dimensionless fi
density in directionz (0 � nf tf � W), and Pr the fluid
Prandtl number,ν/α. To generalize the results of Eq. (1
for all configurations of the type studied in this work, t
dimensionless overall thermal conductance is alternati
defined as follows:

q̃∗ = 2

Nec

[
L

2b

]2
H

2b
q̃ = Pr ReL

(
S

2b
+ 1

)
(1− φf)θ̄out (19)

The mass fraction occupied by solid material is

m̃ = m

ρsL3
= W

L3

[
ntπ

(
ab(a − tt)(b − tt)

)
+ φf(LH − ntπab)

]
(20)

wherett is the thickness of the tube wall, andnt is the total
number tubes of the arrangement.

3. Numerical method

The numerical solution to Eqs. (1)–(14) was obtained
using the finite element method [10], giving the velocit
and temperature fields in the unit cell of Fig. 2. The fi
step in the numerical implementation was the elimination
the pressure variable from Eqs. (2)–(4), by using a pen
model, approximating Eq. (1) as [15],

∂U1

∂X
+ ∂U2

∂Y
+ ∂U3

∂Z
= −P

γ
(21)

whereγ is the penalty factor, which must be assumed la
enough in order to satisfy mass conservation approxima
The implementation of the finite element method for
solution of Eqs. (1)–(5) and (8) starts from obtaining
variational (weak) form of the problem. The weak form
discretized with an ‘upwind’ scheme proposed by Hug
[16], where it is possible to match the discrete form of
problem to the physical characteristics of the flow. Af
developing the discrete form of the problem, the result
algebraic equations are arranged in matrix form for
steady-state three-dimensional problem, as follows:[

C(Ũ) 0 0
0 C(Ũ) 0
0 0 C(Ũ)

]{
Ũ1
Ũ2
Ũ3

}

+
[

2K11 + K22 + K33 K12 K13
K21 K11 + 2K22 + K33 K23
K31 K32 K11 + K22 + 2K33

]

×
{

Ũ1
Ũ2
Ũ3

}
+

[
K̂11 K̂12 K̂13
K̂21 K̂22 K̂23
K̂31 K̂32 K̂33

]{
Ũ1
Ũ2
Ũ3

}
=

{
F1
F2
F3

}
(22)

D̃(Ũ)T̃ + L̃T̃ = G (23)
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where C(Ũ) is the capacity matrix that contains the a
vective terms of the momentum equations, which depe
nonlinearly on the solutionŨ (tripartitioned vector:Ũ1-
directionX, Ũ2-directionY and Ũ3-directionZ, each one
with a number of components equal to the number of
knowns in the mesh);K11, K12, K13, K21, K22, K23, K31,
K32 andK33 are the stiffness matrices with constant co
ficients (constant viscosity), that contain the viscous te
of the momentum equations;̂K11, K̂12, K̂13, K̂21, K̂22, K̂23,
K̂31, K̂32 andK̂33 are the penalty matrices, that contain t
terms due to the elimination of the pressure variable fr
the momentum equations by using Eq. (21), which mus
computed with reduced integration (one point in each di
tion with linear shape functions) to avoid locking;D̃(Ũ) is
the capacity matrix that contains the advective terms of th
energy equation;̃L is the diffusive matrix with constant coe
ficients (constant thermal conductivity), which contains
diffusive terms from the energy equation;F1, F2 andF3 are
the force vectors of the momentum equations that con
the field forces and the velocity boundary conditions, anG

is the force vector of the energy equation that contains
heat source terms of the energy equation and the tem
ture boundary conditions.

For the 3-D problem of Fig. 1, the computational dom
contains both the external fluid and the solid fin. Thus,
solution of Eq. (8) is also required in order to obtain the co
plete temperature field. Insteadof solving separately for th
two entities (fluid and solid) and imposing the same heat
at the interface solid-fluid,as a boundary condition, the s
lution is sought for the entire domain, simultaneously, w
the same set of conservation equations, imposing zero
locities in the solid fin and the appropriate constant coe
cients for the solid fin in the diffusive matrix,̃L, in Eq. (23),
which are obtained from Eq. (8). For the sake of brev
the mathematical details of the components of the above
scribed matrices are not presented. However, the read
directed to the work of Reddy and Gartling [15], which w
the basis for the formulation implemented computation
in the present study. A Fortran subroutine was written to
plement the Navier–Stokes and energy equations in two
three dimensions as isoparametric, four and eight-noded
ear elements, respectively, which were then aggregated to th
open code FEAP [10].

4. Experiments

An experimental apparatus was built in the laboratory
produce the necessary experimental data to validate the
numerical optimization of finned arrangements, and to
form the experimental optimization of finned arrangeme
Fig. 3 shows the main features of the experimental app
tus utilized in this study. A small scale wind tunnel was bu
from naval plywood to prevent deformation due to humid
A test section was designed in modular form as a dra
to allow the testing many configurations just by chang
-

-

-

Fig. 3. Experimental apparatus.

the test module, Fig. 3. The internal dimensions of the
section are 175× 161× 152 mm. An extended region o
1000 mm was placed before the test section to allow the
to develop fully before reaching the arrangement. A fl
straightener consisting of plastic straws was installed a
entrance of the extended region with the purpose of lami
izing the flow, Fig. 3.

The circular and elliptic tube arrangements were m
from copper circular tubes with diameters of 15.875 (5/8′′),
22.23 (7/8′′), 25.4 (1′′) and 28.58 mm (11/8′′) which
resulted in tubes with eccentricitiese = 1.0, 0.6, 0.5 and
0.4, respectively. The wall thickness was 0.794 mm (1/32′′)
for all eccentricities. To construct the elliptic arrangeme
the circular tubes were shaped in the machine shop by u
an appropriately designed tool. All the tubes had a len
of 172 mm. Electric heaters were placed inside the tubes
simulate the heat flux originated from a hot fluid. All th
arrangements had 4 rows of tubes counted in the direc
of the external flow, in Fig. 1. Twelve tubes were th
assembled, in a wooden drawer, which is the test mo
shown in Fig. 3. All the fins were made from aluminu
plates with dimensions of 150× 130× 0.3 mm.

The electric heaters consisted of double step tub
electric resistances with 968�, therefore, with a maximum
power dissipation of 50 W with 220 V. The electric heat
had a small enough diameter to be fitted into the cop
tubes, and were fed with a variable voltage source (30
1.4 A), so that all the arrangements have the same po
input.

Twelve high precision thermistors of type YSI 440
(resistance 2250� at 25◦C) were placed inside each te
module. All the thermistors were placed in the midplan
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between the side walls of the wind tunnel and at the mid
of the elemental channels. Three thermistors were pla
at the inlet (T1–T3), five at the outlet (T8–T12), and fo
at the tube surfaces in one elemental channel (T4–T7)
additional thermistor (T13) was placed at the midpoint
the extended region to measure the free stream temper
The thermistors at the inlet and outlet of the arrangem
permitted the determination of the vertical variation
temperature in the arrangement. In all the tests perform
the vertical temperatures remained within a±0.5 ◦C margin
with respect to the average (vertical) temperatures calcu
at the inlet and outlet. The thermistors on the tube surfa
showed that the temperature difference between tubes in
elemental channel is negligible, namely, within±0.3 ◦C of
the measured average of the four thermistors. Finally,
additional thermistor placed at the extended region meas
free stream temperatures within±0.5 ◦C of the measured
average arrangement inlet temperature.

Velocity measurements were made with a vane-type
ital anemometer, model HHF 300A (OMEGA Engineeri
Inc.), which was placed at the extended flow region,
shown in Fig. 3. For the range of 0.1 to 35 m·s−1, the ve-
locity bias limit is ±2.5% of the reading. The free strea
velocity was 0.1 and 0.13 m·s−1 in this study. To allow for
the continuous variation of the fan velocity, a variable pow
source with 30 V and maximum current 2 A was used.

The pressure drop measurements were taken with a
sure transducer, model PX137-0.3DV (OMEGA Engine
ing Inc.), with a nominal range of (0–2068.5 Pa), wh
was connected to a digital pressure meter, model DP25
(OMEGA Engineering Inc.). The differential pressure ma
imum bias limit is ±1% of the reading. The differentia
pressure measurements had the purpose of determinin
pressure drop across each arrangement in all experiments
Fig. 3.

The experimental work involved the acquisition of te
perature data in real time. This task was performed thro
the utilization of a computational data acquisition syst
which consisted of a virtual data logger AX 5810 [17] a
four multiplexers AX758 [18] which allowed for the seque
tial data acquisition from 64 channels at time intervals
1/256 s. All the data were processed by a suitable softw
application to convert the sensors signals in readable
peratures.

The thermistors were calibrated in the laboratory
determine the bias limits. The thermistors were immerse
a constant temperature bath maintained by a bath circul
and a total of 64 temperature measurements were m
between 20 and 80◦C, at 10◦C increments. The larges
standard deviation of these measurements was 0.000◦C,
and, therefore, the bias limit was set at±0.001◦C for
all thermistors. This bias limit is in agreement with t
±0.0003◦C of the same thermistors in a natural convect
experiment [19] and with the±0.0005◦C bias limit listed in
an instrumentation handbook [20].
.

,

e

-

e

,

The objective of the experimental work was to evalu
the volumetric heat transfer density (or overall therm
conductance) of each tested arrangement by computinq̃∗
with Eq. (19) through direct measurements ofu∞(ReL), and
�Tout, �Tw andT∞(θ̄out). Five runs were conducted for ea
experiment. Steady-state conditions were reached after 3 h
all the experiments. The precision limit for each temperatur
point was computed as two times the standard deviatio
the 5 runs [21]. It was verified that the precision limits of
variables involved in the calculation of̃q∗ were negligible
in presence of the precision limit of̄θout. The thermistors
anemometer, properties and lengths bias limits were fo
negligible in comparison with the precision limit ofq̃∗. As a
result the uncertainty of̃q∗ was calculated from

Uq̃∗
q̃∗

= Pθ̄out

θ̄out
(24)

wherePθ̄out
is the precision limit ofθ̄out.

For a particular tube and plate fin geometry, the te
started with an equilateral triangle configuration, wh
filled regularly the fixed volume, with a resulting maximu
dimensionless tube-to-tube spacingS/2b = 1.5. The spacing
between tubes was then reduced stepwise:S/2b = 1.5, 0.5,
0.25 and 0.1. In this interval an optimal spacing was fo
such that̃q∗ was maximum. All the tested arrangements h
the aspect ratioL/2b = 8.52.

Two free stream velocities were tested,u∞ = 0.1 and
0.13 m·s−1, corresponding toReL = 852 and 1065, re
spectively. The largest uncertainty calculated according t
Eq. (24) in all tests wasUq̃∗/q̃∗ = 0.048.

5. Results and discussion

The results obtained in this study are divided in t
parts: (i) experimental validation of 3-D numerical resu
for finned arrangements, and (ii) global optimization res
with respect to tube-to-tube spacing, eccentricity and
density.

The nonlinear system of Eqs. (22) and (23) was solve
the Newton–Raphson method [15], to obtain the velocities
and temperatures in the computational domain of Fig. 2.
dimensionless temperatures at the elemental channel o
were used to compute the dimensionless volumetric
transfer densitỹq∗ defined by Eq. (19).

The numerical results obtained with Eq. (19) are expe
to be more accurate than the results that would be obtaine
by computing the sum of heat fluxes at the tubes surface
the elemental channel. The reason is that the former are
tained from the finite element temperature solution, wherea
the latter are obtained from temperature spatial derivat
which are computed from postprocessing the finite elemen
solution. It is well known that the numerical error in th
derivative of the solution is larger than the numerical erro
the solution itself. To obtainaccurate numerical results, se
eral mesh-refinement tests were conducted. The monit
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quantity was the dimensionless overall thermal conducta
computed with Eq. (19), according to the following crite-
rion:

ε = |q̃∗,j − q̃∗,j−1|/|q̃∗,j | � 0.02 (25)

wherej is the mesh iteration index, such thatj increases
when the mesh is more refined. When the criterion is sa
fied, thej − 1 mesh is selected as the converged mesh.

Criterion (25) was used to find the appropriate len
to the extension domain defined in the unit cell of Fig.
The numerical results obtained with an extensionL were
compared with the numerical results obtained with
extension of 3L/2, and satisfied the criterion of Eq. (25
by replacing the subscriptj with 3L/2 and the subscrip
j − 1 with L. Therefore, the use of an extensionL upstream
and downstream of the unit cell was found to be
appropriate to represent the actual flow. Nonregular me
were used, such that mesh-regions close to the tubes
more refined, to account for the highest gradients in
solution. The last three mesh iterations had (a) 12780 n
and 9600 elements; (b) 17160 nodes and 13200 elem
and (c) 23166 nodes and 18480 elements, with a rela
error below 4% when (a) and (b) are compared, and be
2% when (b) and (c) are compared, according to Eq. (
Therefore, in all the cases the selected mesh consiste
17160 nodes and 13200 elements. A sample of conve
mesh used in this work is shown in Fig. 4.

The numerical results obtained with the finite elemen
code were validated by direct comparison to experime
results obtained in the laboratory for circular and ellip
arrangements. According to Fig. 1, the dimensions of
fixed volume during experimental optimization wereL =
135.33 mm,H = 115.09 mm,W = 152 mm andD = 2b =
15.875 mm. All the arrangements hadNec = 6 andN = 4,
whereN is the number of tubes in one unit cell.

The numerical and experimental optimization procedure
followed the same steps. First, for a given eccentric
the dimensionless overall thermal conductance,q̃∗, was
computed with Eq. (19), for the range 0.1� S/2b � 1.5. The
same procedure was repeated fore = 0.45, 0.5, 0.6 and 1.

Results were obtained for the laminar regime (ReL =
852 and 1065). Figs. 5–8 show the optimization res
for finned arrangements(φf = 0.006) with respect to tube
to-tube spacing,S/2b, for eccentricitiese = 1, 0.6, 0.5
and 0.45, respectively. Experimental measurements were n
conducted fore = 0.45, therefore, only numerical resul
are shown in Fig. 8. There is good agreement betw
experimental and numerical results, mainly with respec
the location of the optimal spacing,S/2b ∼= 0.5, for all
eccentricities therefore validating the numerical results.
influence of the variation ofReL is also investigated. AsReL

increases,̃q∗ increases.
The numerical and experimental double optimizat

results for finned tubes(φf = 0.006) with respect to tube
to-tube spacings and eccentricities are shown in Fig
together with the corresponding experimental results,
,

e

,

f

Fig. 4. Sample of converged mesh(e = 0.5).

ReL = 852 and 1065. Thẽq∗,m values obtained numericall
and experimentally are in good agreement. The agree
is remarkable if we consider that in the experiments
tested arrays had uniform heat flux, and did not con
many cylinders. In the numerical simulations the dom
was infinitely wider (i.e., no influence from the wind tunn
walls) and with isothermal tubes. An optimal eccentric
was not obtained experimentally, since an arrangement
e < 0.5 was not built. However, the numerical results w
validated by the good agreement with the experime
results fore = 0.5, 0.6 and 1. Hence, the numerical resu
obtained fore = 0.45 are also expected to be accurate.
e = 0.45, q̃∗,m drops considerably with respect toe = 0.5,
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Fig. 5. Numerical and experimental optimization results for finned circ
arrangements(e = 1).

Fig. 6. Numerical and experimental optimization results for finned elli
arrangements(e = 0.6).

determining an optimal pair(S/2b, e)opt = (0.5,0.5) for the
twice maximized overall heat transferq̃∗,mm.

Fig. 10 shows an intermediate step in the optimiza
procedure, to facilitate the comparison between the opt
elliptic configuration with the optimal circular one. No
that q̃∗,m for the elliptic arrangement(e = 0.5) optimized
with respect to tube-to-tube spacing is higher thanq̃∗,m
for the circular arrangement(e = 1) for all fin densities,
φf . Furthermore, the elliptic configuration requires less
than the circular one at optimal conditions, i.e., at
optimal pair (S/2b,φf)opt. It is possible to determine th
Fig. 7. Numerical and experimental optimization results for finned elli
arrangements(e = 0.5).

Fig. 8. Numerical optimization results for finned elliptic arrangeme
(e = 0.45).

total mass of material in dimensionless terms [via Eq. (
at (S/2b,φf)opt] for both arrangements. The result is that t
total dimensionless mass of the optimal elliptic arrangem
is 32% smaller than the optimal circular arrangement.

Fig. 11 reports the results of global optimization w
respect to the three degrees of freedom,S/2b, e and
φf . An optimal set of geometric parameters was de
mined numerically such that̃q∗ was maximized three times
(S/2b, e,φf)opt ∼= (0.5,0.5,0.06).

Fig. 12 shows the temperature distribution of plate fi
for four-row heat exchangers for circular and elliptic(e =
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Fig. 9. Numerical and experimental optimization results for finned arrange
ments.

Fig. 10. Comparison of the numerical optimization results for finn
circular and elliptic arrangements.

0.5) tubes,S/2b = 0.5, φf = 0.006, and withReL = 852.
The effect of the variation of eccentricity is observed b
comparing cases (a) and (b) in Fig. 12. It is also shown
the elliptical arrangement is more efficient than circular o
This is due to the fact that the fin temperature distributio
more uniform in the elliptic configuration than in the circu
one, and closer to tube wall temperature, characterizin
better thermal contact between the tubes and the fluid in
elliptic arrangement.

Because the governing equations are for the lam
regime, the results of Figs. 5–12 were obtained for
Reynolds numbers, or small dimensions,ReL = 852 and
1065. For higher Reynolds numbers, convergence to num
Fig. 11. Numerical global optimization results for finned arrangements.

cal solutions becomes increasingly more difficult, indicat
the flow is reaching a regime of transition to turbulence.

6. Conclusions

In this paper, a combined numerical and experime
study was conducted to demonstrate that finned circular
elliptic tubes heat exchangers can be optimized for m
imum heat transfer, under a fixed volume constraint.
internal geometric structure of the arrangements was o
mized for maximum heat transfer. Better global performanc
is achieved when flow and heat transfer resistances are mi
imized together, i.e., when the imperfection is distribu
optimally in the available space [1]. Optimal distribution
imperfection represents flow architecture, or constructal
sign.

The results were presented nondimensionally to pe
the general application to heatexchangers of the type treate
in this study. A suitable equivalent pressure drop criter
permitted the comparison between circular and ellip
arrangements on a heat transfer basis in the most iso
way possible. The optimal elliptic arrangement exhibit
heat transfer gain of up to 19% relative to the optim
circular tube arrangement. The heat transfer gain and
relative total dimensionless material mass reduction o
to 32% show that the elliptical arrangement has the pote
to deliver considerably higher global performance and lo
cost.

Three degrees of freedom were investigated in the
exchanger geometry: tube-to-tube spacing, eccentricity an
fin-to-fin spacing. Global optima were found with respec
tube-to-tube spacing, eccentricityand fin-to-fin spacing, i.e.
(S/2b, e,φf)opt ∼= (0.5,0.5,0.06) for ReL = 852 and 1065
Such globally optimized configurations are expected to
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Fig. 12. Fin temperature distribution for four-row tubes and plate fin heat exchangers: (a)S/2b = 0.5, e = 1, (φf = 0.006) andReL = 852; (b)S/2b = 0.5,
e = 0.5, (φf = 0.006) andReL = 852.
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of great importance for actual heat exchangers enginee
design, and for the generation of optimal flow structure
general.
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